3.82 \(\int x^2 \sinh ^{-1}(a x)^{3/2} \, dx\)

Optimal. Leaf size=179 \[ -\frac {3 \sqrt {\pi } \text {erf}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{32 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {erf}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{96 a^3}-\frac {3 \sqrt {\pi } \text {erfi}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{32 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {erfi}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{96 a^3}-\frac {x^2 \sqrt {a^2 x^2+1} \sqrt {\sinh ^{-1}(a x)}}{6 a}+\frac {\sqrt {a^2 x^2+1} \sqrt {\sinh ^{-1}(a x)}}{3 a^3}+\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2} \]

[Out]

1/3*x^3*arcsinh(a*x)^(3/2)+1/288*erf(3^(1/2)*arcsinh(a*x)^(1/2))*3^(1/2)*Pi^(1/2)/a^3+1/288*erfi(3^(1/2)*arcsi
nh(a*x)^(1/2))*3^(1/2)*Pi^(1/2)/a^3-3/32*erf(arcsinh(a*x)^(1/2))*Pi^(1/2)/a^3-3/32*erfi(arcsinh(a*x)^(1/2))*Pi
^(1/2)/a^3+1/3*(a^2*x^2+1)^(1/2)*arcsinh(a*x)^(1/2)/a^3-1/6*x^2*(a^2*x^2+1)^(1/2)*arcsinh(a*x)^(1/2)/a

________________________________________________________________________________________

Rubi [A]  time = 0.37, antiderivative size = 179, normalized size of antiderivative = 1.00, number of steps used = 22, number of rules used = 10, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.833, Rules used = {5663, 5758, 5717, 5657, 3307, 2180, 2204, 2205, 5669, 5448} \[ -\frac {3 \sqrt {\pi } \text {Erf}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{32 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {Erf}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{96 a^3}-\frac {3 \sqrt {\pi } \text {Erfi}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{32 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {Erfi}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{96 a^3}-\frac {x^2 \sqrt {a^2 x^2+1} \sqrt {\sinh ^{-1}(a x)}}{6 a}+\frac {\sqrt {a^2 x^2+1} \sqrt {\sinh ^{-1}(a x)}}{3 a^3}+\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[x^2*ArcSinh[a*x]^(3/2),x]

[Out]

(Sqrt[1 + a^2*x^2]*Sqrt[ArcSinh[a*x]])/(3*a^3) - (x^2*Sqrt[1 + a^2*x^2]*Sqrt[ArcSinh[a*x]])/(6*a) + (x^3*ArcSi
nh[a*x]^(3/2))/3 - (3*Sqrt[Pi]*Erf[Sqrt[ArcSinh[a*x]]])/(32*a^3) + (Sqrt[Pi/3]*Erf[Sqrt[3]*Sqrt[ArcSinh[a*x]]]
)/(96*a^3) - (3*Sqrt[Pi]*Erfi[Sqrt[ArcSinh[a*x]]])/(32*a^3) + (Sqrt[Pi/3]*Erfi[Sqrt[3]*Sqrt[ArcSinh[a*x]]])/(9
6*a^3)

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5657

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cosh[a/b - x/b], x], x,
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 5663

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^(m + 1)*(a + b*ArcSinh[c*x])^n)/
(m + 1), x] - Dist[(b*c*n)/(m + 1), Int[(x^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /;
FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]

Rule 5669

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Sinh[x]^m*Cosh[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5717

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)
^(p + 1)*(a + b*ArcSinh[c*x])^n)/(2*e*(p + 1)), x] - Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p +
 1)*(1 + c^2*x^2)^FracPart[p]), Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rule 5758

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n)/(e*m), x] + (-Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)
^(m - 2)*(a + b*ArcSinh[c*x])^n)/Sqrt[d + e*x^2], x], x] - Dist[(b*f*n*Sqrt[1 + c^2*x^2])/(c*m*Sqrt[d + e*x^2]
), Int[(f*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] &&
 GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rubi steps

\begin {align*} \int x^2 \sinh ^{-1}(a x)^{3/2} \, dx &=\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2}-\frac {1}{2} a \int \frac {x^3 \sqrt {\sinh ^{-1}(a x)}}{\sqrt {1+a^2 x^2}} \, dx\\ &=-\frac {x^2 \sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{6 a}+\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2}+\frac {1}{12} \int \frac {x^2}{\sqrt {\sinh ^{-1}(a x)}} \, dx+\frac {\int \frac {x \sqrt {\sinh ^{-1}(a x)}}{\sqrt {1+a^2 x^2}} \, dx}{3 a}\\ &=\frac {\sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{3 a^3}-\frac {x^2 \sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{6 a}+\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2}+\frac {\operatorname {Subst}\left (\int \frac {\cosh (x) \sinh ^2(x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{12 a^3}-\frac {\int \frac {1}{\sqrt {\sinh ^{-1}(a x)}} \, dx}{6 a^2}\\ &=\frac {\sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{3 a^3}-\frac {x^2 \sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{6 a}+\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2}+\frac {\operatorname {Subst}\left (\int \left (-\frac {\cosh (x)}{4 \sqrt {x}}+\frac {\cosh (3 x)}{4 \sqrt {x}}\right ) \, dx,x,\sinh ^{-1}(a x)\right )}{12 a^3}-\frac {\operatorname {Subst}\left (\int \frac {\cosh (x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{6 a^3}\\ &=\frac {\sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{3 a^3}-\frac {x^2 \sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{6 a}+\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2}-\frac {\operatorname {Subst}\left (\int \frac {\cosh (x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{48 a^3}+\frac {\operatorname {Subst}\left (\int \frac {\cosh (3 x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{48 a^3}-\frac {\operatorname {Subst}\left (\int \frac {e^{-x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{12 a^3}-\frac {\operatorname {Subst}\left (\int \frac {e^x}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{12 a^3}\\ &=\frac {\sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{3 a^3}-\frac {x^2 \sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{6 a}+\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2}+\frac {\operatorname {Subst}\left (\int \frac {e^{-3 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{96 a^3}-\frac {\operatorname {Subst}\left (\int \frac {e^{-x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{96 a^3}-\frac {\operatorname {Subst}\left (\int \frac {e^x}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{96 a^3}+\frac {\operatorname {Subst}\left (\int \frac {e^{3 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{96 a^3}-\frac {\operatorname {Subst}\left (\int e^{-x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{6 a^3}-\frac {\operatorname {Subst}\left (\int e^{x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{6 a^3}\\ &=\frac {\sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{3 a^3}-\frac {x^2 \sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{6 a}+\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2}-\frac {\sqrt {\pi } \text {erf}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{12 a^3}-\frac {\sqrt {\pi } \text {erfi}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{12 a^3}+\frac {\operatorname {Subst}\left (\int e^{-3 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{48 a^3}-\frac {\operatorname {Subst}\left (\int e^{-x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{48 a^3}-\frac {\operatorname {Subst}\left (\int e^{x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{48 a^3}+\frac {\operatorname {Subst}\left (\int e^{3 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{48 a^3}\\ &=\frac {\sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{3 a^3}-\frac {x^2 \sqrt {1+a^2 x^2} \sqrt {\sinh ^{-1}(a x)}}{6 a}+\frac {1}{3} x^3 \sinh ^{-1}(a x)^{3/2}-\frac {3 \sqrt {\pi } \text {erf}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{32 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {erf}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{96 a^3}-\frac {3 \sqrt {\pi } \text {erfi}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{32 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {erfi}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{96 a^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 102, normalized size = 0.57 \[ \frac {-\sqrt {3} \sqrt {\sinh ^{-1}(a x)} \Gamma \left (\frac {5}{2},-3 \sinh ^{-1}(a x)\right )+27 \sqrt {\sinh ^{-1}(a x)} \Gamma \left (\frac {5}{2},-\sinh ^{-1}(a x)\right )+\sqrt {-\sinh ^{-1}(a x)} \left (27 \Gamma \left (\frac {5}{2},\sinh ^{-1}(a x)\right )-\sqrt {3} \Gamma \left (\frac {5}{2},3 \sinh ^{-1}(a x)\right )\right )}{216 a^3 \sqrt {-\sinh ^{-1}(a x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^2*ArcSinh[a*x]^(3/2),x]

[Out]

(-(Sqrt[3]*Sqrt[ArcSinh[a*x]]*Gamma[5/2, -3*ArcSinh[a*x]]) + 27*Sqrt[ArcSinh[a*x]]*Gamma[5/2, -ArcSinh[a*x]] +
 Sqrt[-ArcSinh[a*x]]*(27*Gamma[5/2, ArcSinh[a*x]] - Sqrt[3]*Gamma[5/2, 3*ArcSinh[a*x]]))/(216*a^3*Sqrt[-ArcSin
h[a*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arcsinh(a*x)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{2} \operatorname {arsinh}\left (a x\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arcsinh(a*x)^(3/2),x, algorithm="giac")

[Out]

integrate(x^2*arcsinh(a*x)^(3/2), x)

________________________________________________________________________________________

maple [F(-2)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int x^{2} \arcsinh \left (a x \right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*arcsinh(a*x)^(3/2),x)

[Out]

int(x^2*arcsinh(a*x)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{2} \operatorname {arsinh}\left (a x\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*arcsinh(a*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^2*arcsinh(a*x)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x^2\,{\mathrm {asinh}\left (a\,x\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*asinh(a*x)^(3/2),x)

[Out]

int(x^2*asinh(a*x)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{2} \operatorname {asinh}^{\frac {3}{2}}{\left (a x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*asinh(a*x)**(3/2),x)

[Out]

Integral(x**2*asinh(a*x)**(3/2), x)

________________________________________________________________________________________